Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Biomed ; 3(1): 43, 2022 Dec 12.
Article in English | MEDLINE | ID: covidwho-2162455

ABSTRACT

GSK3ß has been proposed to have an essential role in Coronaviridae infections. Screening of a targeted library of GSK3ß inhibitors against both SARS-CoV-2 and HCoV-229E to identify broad-spectrum anti-Coronaviridae inhibitors resulted in the identification of a high proportion of active compounds with low toxicity to host cells. A selected lead compound, T-1686568, showed low micromolar, dose-dependent activity against SARS-CoV-2 and HCoV-229E. T-1686568 showed efficacy in viral-infected cultured cells and primary 2D organoids. T-1686568 also inhibited SARS-CoV-2 variants of concern Delta and Omicron. Importantly, while inhibition by T-1686568 resulted in the overall reduction of viral load and protein translation, GSK3ß inhibition resulted in cellular accumulation of the nucleocapsid protein relative to the spike protein. Following identification of potential phosphorylation sites of Coronaviridae nucleocapsid, protein kinase substrate profiling assays combined with Western blotting analysis of nine host kinases showed that the SARS-CoV-2 nucleocapsid could be phosphorylated by GSK3ß and PKCa. GSK3ß phosphorylated SARS-CoV-2 nucleocapsid on the S180/S184, S190/S194 and T198 phospho-sites, following previous priming in the adjacent S188, T198 and S206, respectively. Such inhibition presents a compelling target for broad-spectrum anti-Coronaviridae compound development, and underlies the mechanism of action of GSK3ß host-directed therapy against this class of obligate intracellular pathogens.

2.
Microb Cell Fact ; 21(1): 21, 2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1666655

ABSTRACT

We have developed a method for the inexpensive, high-level expression of antigenic protein fragments of SARS-CoV-2 proteins in Escherichia coli. Our approach uses the thermophilic family 9 carbohydrate-binding module (CBM9) as an N-terminal carrier protein and affinity tag. The CBM9 module was joined to SARS-CoV-2 protein fragments via a flexible proline-threonine linker, which proved to be resistant to E. coli proteases. Two CBM9-spike protein fragment fusion proteins and one CBM9-nucleocapsid fragment fusion protein largely resisted protease degradation, while most of the CBM9 fusion proteins were degraded at some site in the SARS-CoV-2 protein fragment. All of the fusion proteins were highly expressed in E. coli and the CBM9-ID-H1 fusion protein was shown to yield 122 mg/L of purified product. Three purified CBM9-SARS-CoV-2 fusion proteins were tested and found to bind antibodies directed to the appropriate SARS-CoV-2 antigenic regions. The largest intact CBM9 fusion protein, CBM9-ID-H1, incorporates spike protein amino acids 540-588, which is a conserved region overlapping and C-terminal to the receptor binding domain that is widely recognized by human convalescent sera and contains a putative protective epitope.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , Chromatography, High Pressure Liquid , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Mass Spectrometry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Cell Surface/genetics , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
3.
Int J Environ Res Public Health ; 18(22)2021 11 16.
Article in English | MEDLINE | ID: covidwho-1523965

ABSTRACT

The healthcare system has been placed under an enormous burden by the SARS-CoV-2 (COVID-19) pandemic. In addition to the challenge of providing sufficient care for COVID-19 patients, there is also a need to ensure adequate care for non-COVID-19 patients. We investigated neurosurgical care in a university hospital during the pandemic. We examined the second wave of the pandemic from 1 October 2020 to 15 March 2021 in this retrospective single-center study and compared it to a pre-pandemic period from 1 October 2019 to 15 March 2020. Any neurosurgical intervention, along with patient- and treatment-dependent factors, were recorded. We also examined perioperative complications and unplanned readmissions. A statistical comparison of the study groups was performed. We treated 535 patients with a total of 602 neurosurgical surgeries during the pandemic. This compares to 602 patients with 717 surgeries during the pre-pandemic period. There were 67 fewer patients (reduction to 88.87%) admitted and 115 fewer surgeries (reduction to 83.96%) performed, which were essentially highly elective procedures, such as cervical spinal stenosis, intracranial neurinomas, and peripheral nerve lesions. Regarding complication rates and unplanned readmissions, there was no significant difference between the COVID-19 pandemic and the non-pandemic patient group. Operative capacities were slightly reduced to 88% due to the pandemic. Nevertheless, comprehensive emergency and elective care was guaranteed in our university hospital. This speaks for the sufficient resources and high-quality processes that existed even before the pandemic.


Subject(s)
COVID-19 , Neurosurgery , Germany/epidemiology , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
4.
JCI Insight ; 6(8)2021 04 22.
Article in English | MEDLINE | ID: covidwho-1197300

ABSTRACT

Preexisting cross-reactivity to SARS-CoV-2 occurs in the absence of prior viral exposure. However, this has been difficult to quantify at the population level due to a lack of reliably defined seroreactivity thresholds. Using an orthogonal antibody testing approach, we estimated that about 0.6% of nontriaged adults from the greater Vancouver, Canada, area between May 17 and June 19, 2020, showed clear evidence of a prior SARS-CoV-2 infection, after adjusting for false-positive and false-negative test results. Using a highly sensitive multiplex assay and positive/negative thresholds established in infants in whom maternal antibodies have waned, we determined that more than 90% of uninfected adults showed antibody reactivity against the spike protein, receptor-binding domain (RBD), N-terminal domain (NTD), or the nucleocapsid (N) protein from SARS-CoV-2. This seroreactivity was evenly distributed across age and sex, correlated with circulating coronaviruses' reactivity, and was partially outcompeted by soluble circulating coronaviruses' spike. Using a custom SARS-CoV-2 peptide mapping array, we found that this antibody reactivity broadly mapped to spike and to conserved nonstructural viral proteins. We conclude that most adults display preexisting antibody cross-reactivity against SARS-CoV-2, which further supports investigation of how this may impact the clinical severity of COVID-19 or SARS-CoV-2 vaccine responses.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , British Columbia/epidemiology , COVID-19/blood , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Serological Testing/statistics & numerical data , COVID-19 Vaccines/administration & dosage , Cross Reactions/immunology , Cross-Sectional Studies , Female , Geography , Healthy Volunteers , Humans , Immunity, Humoral , Immunoassay/statistics & numerical data , Male , Middle Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL